TRANSIENT PROCESSES IN A THERMAL DIFFUSION
APPARATUS WITH TRANSVERSE FLOWS

A. V. Suvorov and G. D. Rabinovich UDC 621.039.341.6

Transient processes in a thermal diffusion apparatus with transverse flows operating in both the
open and closed cycles are considered. The results obtained are analyzed.

. A theory of a thermal-diffusion apparatus with transverse flows was developed in [1], and theoretical re-
lations are obtained for the steady state, enabling the region in which it is best to use such devices to be de-
termined,

In this paper we consider transient processes in an apparatus the basic scheme of which is shown in Fig.
1. Region1 of height L is the separating part of the apparatus, while in channels II and III, having a constant
cross section x, the separated mixture moves, and this motion can be either unidirectional (forward flow, Fig.
la), or in opposite directions (counter flow, Fig. 1b). In formulating this problem mathematically we will make
the following assumptions [1]: 1) in the lower and upper channels in a vertical direction ideal mixing of the
flows 0g, 07 occurs with the flows 7* arriving from the separating part of the apparatus I; 2) diffusion along the
x axis inside the separating part of the apparatus can be neglected; this condition is satisfied satisfactorily
when there is a fairly large number of discrete columns; 3) we will neglect the longitudinal diffusion in chan-
nels II and III, which corresponds to the condition

ohcy foD <

or U>>—p—§—f—. (1)

The transfer in the direction of the z axis per unit width of the column is given by

T = H* [c(l—c)—- 9 , (2)
dy
where
go_ H _ogbS@TE - HL
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For a transient process in a section of column of width dx we have

*
- dc o dt ) 3)
ot 0z
We will take tle following as the boundary conditions which solution (3) must satisfy:
(v*dt = fepde)y—y,, (v*dt = fipdc),=, )

which shows that the change in the amount of transferred component in the upper and lower parts of the separat-
ing part of the apparatus along a section dx after an infinitely small time is equal to the change in the concen-
tration along this part in the upper and lower channels (in this case we have made use of assumption 1), and al-
so the fact that the purposeful component is concentrated at the top of the column.

Conditions (4) can be rewritten as follows:

dc\

dc » (5)
dt ) ym,

dt jy—0

(r* = [op , <r* =—fip
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Fig. 1. Scheme showing the input and output of the separated mixture
in the apparatus: a) forward flow; b) counter flow; c)closed scheme.

In (5) de/dt is a substantial derivative, i.e., it represents the change in the concentrationu in time and space,
and, taking into account the fact that the problem is one-dimensional
' dc e ¢

# - a TV o

Consequently, conditions (5), taking (2) into account, have the form

dc ac oc ]
H* | c(l —¢) — = + wepfe—— ’
[ ) oy ]y;ye {fep ot 0% Jy=u, (6)
ac dc dc
H*|c(—o) — = o2 poofw 2| .
[c( 09— L=a {flp = oy LO

We will introduce one more éssumption regarding the smallness of the first terms on the right side of
these equations compared with the second terms. This means that we can confine ourselvesto consideringtimes
that satisfy the condition

ty 2, (7)
w
i.e., times which far exceed the time taken for the liquid to flow through the channel. In addition, we will as-

sume, in order to simplify the last calculations, that the separated mixture satisfies the condition c(l—c) = o,
i.e., a constant quantity, while og = 0; = 0. Then, after introducing the dimensionless variables

2
(,):_M._,' 0= Ht, g:i, x:_—_(—)'_ (8)
mL mK _ B H
taking (3) and (6) into account, the problem reduces to solving the heat-conduction equation
ou _ o0 (9)
a0 ay?
with the boundary condition
[ ou + % Ou ] =aq, [ ou —% Ou ] = a. (10)
3 G [ym, oy 3% Jumo

The second of conditions (10) is written for the case when the liquid in both channels moves in the same direc-
tion (forward flow). In the case of counter flow, due to the change in the direction of the flow of liquid in the
lower channel, this condition takes the form

[ ou T du ] —a 11)
dy 08 Jy—o
where

U=c— . (12)
We will take as the initial condition

ulp<o = 0. (13)

In Laplace— Carson transforms the solution of (9) will be

U= A rY +BeVPY (14)

where we must bear in mind that A and B are functions of the longitudinal coordinate £, i.e., A = A(§), B = B({).
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Forward Flow. Using conditions (10), we obtain the following two equations for A(£) and B(¢) using (14):

we' P A @) +V P e Pl A@) + eV PRB ®) —V p e PRBE =a,
— A O LV p AR —xB & —V p BE =a.

The solution of this system gives

A(E):Qexp( Vp Ethy p )—}—Cgexp(—— P Ecth;"?%)—{— 21;77 ( " -’;")7
l—}—th]/p—"’ L o
2 — /
B =C p exp(—l./_l’_gth]/p _5/21)‘6} — exp(—l”p Lée)
1—thy p 29 % / 1—thV 7 Ye_
a — Ye
— - {1+th -z
2V p ( TV 2)

where C, and C, are constants independent of £.

Substituting the expressions obtained into Eq. (14) and assuming that y = yo and y = 0, we obtain the follow-
ing expressions for representing the shift in the concentration in the upper and lower channels (the subscripts
e and i):

oLy &) v ,
ue = 2C, — +2C, g (~ " 2")+V thy/ p 2o "(15)
1—thy p Y 1—thy p 22 2
2 2
exp (L2 VP &) -
u; % 4 Ye a — Ye
T = 2, - — 20, exp(— J— L w7 L
l—tth—g—e 1—th1/p7 % 2) Vo 2 (16)

For forward flow the concentrations at the input of both channels are equal to the initial concentration c,
which enables us to use the following conditions to obtain C, and C,:

Ueltmo = 0, ;=0 = O. (17)
From these conditions and also (15) and (16) we obtain
C,=0,C=———={1—th
1 2T P ( vVrp 9 )
and finally
= ——thy p -2 [1-exp (—‘/—” gcth,/7£)], (18)
vV p 2 %® 2
— a_ o= Ye v — ¥ (19)
%y —[1— (— cth _)]
i s exp ——Ecthy p

-

When changing from (18) and (19) to the originals we will take into account the fact that for fairly large times

l '
ctg)V p = Nl/py+“y P Ye

and the exponent in (18) and (19) takes the form

oxp [~ 1P petny 7 ) ~ exp [— (2/x0) — (pEy./6x)].

Then, instead of (18) and (19) we have

_ — a — Yo a / 28 ) PEY. = Ye
U, = — Uy = ——=thy/ —— exp(——~—)exp(————— thy p 25 .
1,,' p vr 92 vy A 6x 2
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Changing to the originals and confining ourselves to the first terms of the series we obtain

ue=ui=—9—‘l—je—[l—exp(—— % )”:1—— 8 exp(—nzﬁlyf)]. (20)
2 %Ye ai

Counter Flow (Fig. 1b). Using the first of conditions (10) and condition (11) we obtain the following two
equations for A(£) and B(¢):

e’ Ple A'®)+ 1/ P & Pl AE)+ne ' PUB () —y p e PeBE) =a,

#A' B+ P AR+ B ®—v p BO=a
The solution of this system gives

V5 exp(— 7 4]
P a 2,
AR =Ce * 4+ e — ,
VP chy p e
2
— o Ye
li:-’é a exP(T —2~)
B(E) = Cse - =

2]‘ p ch ]/—.,IT Ye

[\

Substituting these quantities into (14) we obtain

-- Y, h / i
— Yeg a exP(—"‘/p 28) _ V7, . exp(l P Ze) B
u= Cge * + == — : e‘fp v+ C2e *— - Ve
2y p chy 7 L 2vp Y

2
From (21), assuming that y = yo and y = 0, we obtain the representations of the shift in concentration in the up-

(21)

@

chy p

per and lower channels

e = Cyexp [~ ' (—?; ——y)] +Czexp[1/7 (%-y)]"ya Shv/?(—yf_y>

p ch V/- 7 —gi (22)

u; = Cyexp (—~ V' f—) -+ Cyexp (V?—j‘) _V% thy p- y2 - 23)

To obtain C, and C, we will assume that in the upper channel at ¢ = 0 liquid enters with a concentration ¢;, and
enters with the same concentration in the lower channel at the opposite end (£ = 1), i.e.,

Udsmo =0, wjle—1 = 0. (24)
From these conditions and (22) and (23) we obtain
o exp [—K%'p——(!/ - ‘KL)] th/_p-—y—e— ,
T W)
o a expp/;p— (ye——i—” thy' 7 Yo
B shy;p— (ye+-,-cl—) 2

Substituting these quantities into (22) and (23) we obtain, after appropriate reduction, with £=1 and £=0

sh1/-p_ Ye Sth

—~ _ % 2 > oy

e = == —= s
1

v 5‘11L2""(£’*«'Jr 37)
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sy Lo VP
L) 2% (25)

Ve 'vv‘p—( 1)’
sl (g

where the subscript "K" corresponds to values of u at the exit of the apparatus.

— 2a
Uig = —

Using tables of integral transformations, we can obtain the originals of (25)

ca

« { B 257252,
ueH:——uiKZQQﬂfj_l ..Lsinz fim {1*—6)(}) _M }
e E n? KYe + 1 (ny. -+ 1)?

n=l

Using the fact that

nge+1 Y 1, nm e
— — sin = ,
2 n‘\:-ll n2 *Ye -+ 1 2(ny. - 1)

we finally obtain

ks . 24720024
Yo = — Usye = aYe —2a Yo + | 2 l—sinz-———————’m exp[-————-————4n e } . (286)
1Yo + 1 i n? %y, + 1 (ry. + 1)?

n=1

Since the approximation of the nonlinear term in (6) c¢(1—¢) =~ 1/4 which we assumed holds approximate-
ly in the range of values 0.3<c<0.7, in the steady state the maximum permissible shift in concentration for
which this approximation describes the process with satisfactory accuracy is (¢gx - Codmax = (€g— i) max = 0-2.
In addition, for this maximum value the logarithm of the degree of separation Inq=yg =In [ceir /(1 -’ceK)/@iK/a -
¢jg)1=1.7. Taking these factors into account in the steady state we will have form (26)

02> — LT o w0665 (27)
4(1.7«+ 1)
Hence, (27) is the condition defining the limits of applicability of (26). It can be seen from (26} also that ugy =
ujg =0 as n—ew Or yg—0, i.e., in this case separation will not occur.

The steady state will be achieved in practice when the exponent in the first term of series (26) is greater .
than four, This leads to the following estimate of the transient time:

P ’ 1 2
32(15&;*__1) ) (28)
. ax

The Closed Scheme, We will now consider the scheme shown in Fig. lc. Its distinguishing feature is the
fact that the liquid moves in a closed circuit in the channels. In this case, to obtain the constants in (22) and
(23) we must use the condition for the concentrations at similar ends of the upper and lower channels to be the
same, i.e., .

(Ce—Ci)e=o = 0, (co— Ci)e=1 == 0. (29)

a EXP[@(%_—%)]

VT g ey 4

Using these conditions we obtain

Ciz

]

Substituting this into (21) we obtain

o 1 ___§ Yo . h —( Ye o
T _Sh[‘/p( 2% 77“7””” _ e ) {Vp(2 y” _ (30)
Vr a2y s L Ve ey L
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Equation (30) also satisfies the integral condition

lg{e
_I__S‘S;dydgzo,
Ye

0 0

which follows from the conditions for this system to be closed. The transform for the instantaneous shift in
concenfration in the upper and lower channels, according to (30), takes the form

T = Ye a [ shiV p (28— 1)2x] __ chlv p (2§~1)/2K1 — 4\
iv“tth 2 +V}T{ ch(V p 12x) o ch(y p /2% h(Vp 7)!’

where the plus and minus signs relate to the upper and lower channels, respectively. We change back to the
originals for the first two ter ms using expansion theorems, and the expansion and convolution theorems for the
third term. As a result we obtain
2%—1
2

Ug i ==C,; —Cp= QA

n2x (2n —1)?

L n—1
4a 2 (—1) exp [— (21 — 1) n2x20)] sin[(Qn———l)%—(?ﬁ— 1)] +
n=1

(_ l)n—l %

4. 208 E (1) exp[— (20— 1) a220] cos [(2n—1)ﬂ(2§—1)] 1627, W
T n=1 2ﬂ.——-1 . 2 : k=1 n=I1

(2n — 12 %%y% exp [— (2n — 1)2 72x20 | — (2% — 1)2exp [—(26—1)2 n20/42 1
(@1 — 1) (2 — 1P [P0 — 1) o — (2k— 17

“cos [(2n——— 1)12‘- (&— 1)} . 51

It is easy to show that when ¢ = 0 the right side of (31) vanishes, i.e., condition (13) is satisfied.

Analysis of solution (31) enables us to draw the following conclusions.

1. In the steady state the instantaneous shift in concentration is a linear function of the length of the chan-
nel ¢ while the difference in concentration between the ends of the apparatus

Cle—1 — Cle—o = 2 . (32)
%

It is noteworthy that this difference is independent of the height of the column, which obviously only holds inthe
limits of the approximation used. Considering the above, and (26) we obtain from (32)

04>-2 o %>0.62. (33)
A

2. In any cross section of the channel in the steady state c, = ¢, which should correspond to the absence
of a concentration gradient along the height. This can easily be shown by differentiating (30) with respect to y
and pufting p = 0 (the steady state). The absence of a gradient, as follows from (2), leads to constancy of the
transfer over the height of the column and, consequently, to the fact that the degree of separation is independent
of yg.

3. At the ends of the apparatus (£ = 0, £ = 1) the shift in concentration continues to be independent of the

height of the column during the transient, whereas in the intermediate sections the shift in concentration de-
pends on ye.

4. The steady state is reached after a dimensionless time

4
6> nexe

if yo=1/%, and after a time
2

4y
0> __n;_ , (34)
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if ye=1M. Note that (34) determines the transient time in a column closed at both ends and, consequently, by
an appropriate choice of the rate of circulation (») of the apparatus operating in the scheme illustrated in Fig.
1c, the same equilibrium concentration can be achieved in a much shorter time.

NOTATION

o, mass flow rate of the liquid through the channel in unit time; D, binary diffusion coefficient; «, ther-
mal diffusion constant; p, density; B, volume expansion coefficients; &, gap, i.e., the distance between the two
constant-temperature surfaces; AT=T,~T; T,, T,, temperatures of the heated and cooled surfaces T = (T, +
T,}/2; m, dynamic viscosity; B, length; L, height of the apparatus; =z, vertical coordinate; x, longitudinal co-
ordinate; K = g*p’826"(AT)?B/91%’D; c, mass concentration; T*, transfer of the purposeful component in the
vertical direction in units of mass in unit time per unit length of the apparatus; m* =pd; t, time; f, area of
transverse cross section of the channel; w, rate of flow of the liguid in the channel; yg = HL/K; w, 6, £, ®,
see Eqgs. (8); u, see Eq. (12); and p, an operator. Subscripts: e, upper channel; i, lower channel; 0, initial
value, and K, end of the apparatus.
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STABILITY OF THE INTERPHASE SURFACE 1IN
THE FREEZING OF MOIST GROUND

Yu. S. Daniélyan and P. A. Yanitskii UDC 624.131.4/5:625.123

It is suggested that the formation of ice layers should be regarded as a consequence of a loss
of stability of the motion of the freezing front. The kinetics of the freezing process is investi-
gated and a stability criterion is obtained.

The freezing of moist ground is accompanied by the migration of moisture, i.e., by a redistribution of the
initial moisture. Experiments show that in different grounds and for different modes of freezing the redistribu-
tion of the moisture leads to various textures of the frozen rocks. In particular, in certain cases ice layers
are formed, and sometimes monotonic freezing, etc., occurs. There are different ways of describing the vari-
ous aspects of this phenomenon. Examples are given in {1, 2]. Below we carry out a theoretical analysis based
on a study of the stability of the process. The formation of ice layers is treated as a consequence of the loss
of stability of the motion of the freezing front with respect to small perturbations.

The one-dimensional freezing problem, taking into account the migration of moisture, can be described
in the following form [3]:

T, &T,

= » O<<x<<s(D),
at “ ox? @
oT, _ . 0T
o ¢ oot
ow W sy <<x<<L.
ot on2

Theinitial conditions are

W, O)=W,, Tolx, 0)=T

H

and the boundary conditions are
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